skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Devaraj, Arun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. β-titanium (β-Ti) alloys are useful in diverse industries because their mechanical properties can be tuned by transforming the metastable β phase into other metastable and stable phases. Relationships between lattice parameter and β-Ti alloy concentrations have been explored, but the lattice parameter evolution during β-phase transformations is not well understood. In this work, the β-Ti alloys, Ti-11Cr, Ti-11Cr-0.85Fe, Ti-11Cr-5.3Al, and Ti-11Cr-0.85Fe-5.3Al (all in at.%), underwent a 400 °C aging treatment for up to 12 h to induce the β-to-ω and β-to-α phase transformations. Phase identification and lattice parameters were measured in situ using high-temperature X-ray diffraction. Phase compositions were measured ex situ using atom probe tomography. During the phase transformations, Cr and Fe diffused from the ω and α phases into the β matrix, and the β-phase lattice parameter exhibited a corresponding decrease. The decrease in β-phase lattice parameter affected the α- and ω-phase lattice parameters. The α phase in the Fe-free alloys exhibited α-phase c/a ratios close to those of pure Ti. A larger β-phase composition change in Ti-11Cr resulted in larger ω-phase lattice parameter changes than in Ti-11Cr-0.85Fe. This work illuminates the complex relationship between diffusion, composition, and structure for these diffusive/displacive transformations. 
    more » « less
  3. Single-phase body-centered cubic (bcc) refractory medium- or high-entropy alloys can retain compressive strength at elevated temperatures but suffer from extremely low tensile ductility and fracture toughness. We examined the strength and fracture toughness of a bcc refractory alloy, NbTaTiHf, from 77 to 1473 kelvin. This alloy’s behavior differed from that of comparable systems by having fracture toughness over 253 MPa·m1/2, which we attribute to a dynamic competition between screw and edge dislocations in controlling the plasticity at a crack tip. Whereas the glide and intersection of screw and mixed dislocations promotes strain hardening controlling uniform deformation, the coordinated slip of <111> edge dislocations with {110} and {112} glide planes prolongs nonuniform strain through formation of kink bands. These bands suppress strain hardening by reorienting microscale bands of the crystal along directions of higher resolved shear stress and continually nucleate to accommodate localized strain and distribute damage away from a crack tip. 
    more » « less
  4. Abstract In alignment with the Materials Genome Initiative and as the product of a workshop sponsored by the US National Science Foundation, we define a vision for materials laboratories of the future in alloys, amorphous materials, and composite materials; chart a roadmap for realizing this vision; identify technical bottlenecks and barriers to access; and propose pathways to equitable and democratic access to integrated toolsets in a manner that addresses urgent societal needs, accelerates technological innovation, and enhances manufacturing competitiveness. Spanning three important materials classes, this article summarizes the areas of alignment and unifying themes, distinctive needs of different materials research communities, key science drivers that cannot be accomplished within the capabilities of current materials laboratories, and open questions that need further community input. Here, we provide a broader context for the workshop, synopsize the salient findings, outline a shared vision for democratizing access and accelerating materials discovery, highlight some case studies across the three different materials classes, and identify significant issues that need further discussion. Graphical abstract 
    more » « less
  5. null (Ed.)
    Abstract Extreme shear deformation is used for several material processing methods and is unavoidable in many engineering applications in which two surfaces are in relative motion against each other while in physical contact. The mechanistic understanding of the microstructural evolution of multi-phase metallic alloys under extreme shear deformation is still in its infancy. Here, we highlight the influence of shear deformation on the microstructural hierarchy and mechanical properties of a binary as-cast Al-4 at.% Si alloy. Shear-deformation-induced grain refinement, multiscale fragmentation of the eutectic Si-lamellae, and metastable solute saturated phases with distinctive defect structures led to a two-fold increase in the flow stresses determined by micropillar compression testing. These results highlight that shear deformation can achieve non-equilibrium microstructures with enhanced mechanical properties in Al–Si alloys. The experimental and computational insights obtained here are especially crucial for developing predictive models for microstructural evolution of metals under extreme shear deformation. 
    more » « less
  6. Abstract With the astonishing advancement of present technology and increasing energy consumption, there is an ever‐increasing demand for energy‐efficient multifunctional sensors or transducers based on low‐cost, eco‐friendly material systems. In this context, self‐assembled vertically alignedβ‐Ga2−xWxO3nanocomposite (GWO‐VAN) architecture‐assisted self‐biased solar‐blind UV photodetection on a silicon platform, which is the heart of traditional electronics is presented. Utilizing precisely controlled growth parameters, the formation of W‐enriched verticalβ‐Ga2−xWxO3nanocolumns embedded into the W‐deficientβ‐Ga2−xWxO3matrix is reached. Detailed structural and morphological analyses evidently confirm the presence ofβ‐Ga2−xWxO3nanocomposite with a high structural and chemical quality. Furthermore, absorption and photoluminescence spectroscopy explains photo‐absorption dynamics and the recombination through possible donor–acceptor energy states. The proposed GWO‐VAN framework facilitates evenly dispersed nanoregions with asymmetric donor energy state distribution and thus forms build‐in potential at the verticalβ‐Ga2−xWxO3interfaces. As a result, the overall heterostructure evinces photovoltaic nature under the UV irradiation. A responsivity of ≈30 A/W is observed with an ultrafast response time (≈350 µs) under transient triggering conditions. Corresponding detectivity and external quantum efficiency are 7.9 × 1012Jones and 1.4 × 104%, respectively. It is believed that, while this is the first report exploiting GWO‐VAN architecture to manifest self‐biased solar‐blind UV photodetection, the implication of the approach is enormous in designing electronics for extreme environment functionality and has immense potential to demonstrate drastic improvement in low‐cost UV photodetector technology. 
    more » « less